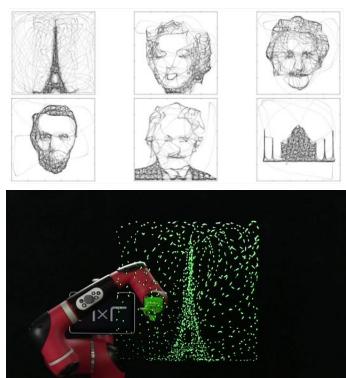
Tutorial on Ergodic Control @ ICRA 2024

May 13th, 2024 Yokohama, Japan <u>https://ergodiccontrol.github.io/</u>

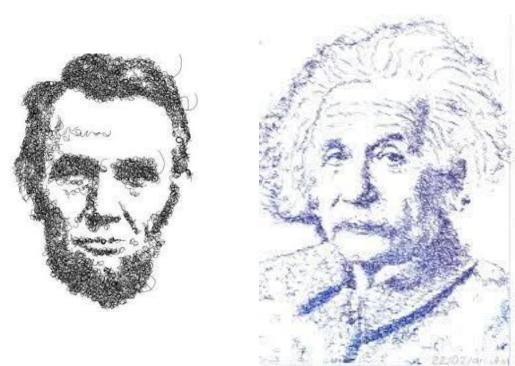
WELCOME TO THE ERGODIC CONTROL TUTORIAL

Todd Murphey Mechanical Engineering Physical Therapy and Human Movement Sciences Center for Robotics and Biosystems Northwestern University

Northwestern CENTER FOR ROBOTICS


Ergodic Control is multiple things

- A measure from thermodynamics / statistical mechanics / information theory, connecting representations of robot trajectories to distributions
- 2. Specification of behavior, making some behaviors easier to specify
 - 1. An alternative to the use of trajectory error in the state space as
 - 2. Clarifies what the word 'random' means
- 3. A justification for using spectral representations, which have excellent scaling properties (e.g., scaling with respect to number of entities in an environment)
- 4. A design paradigm for robot behavior


What We Will Learn Today

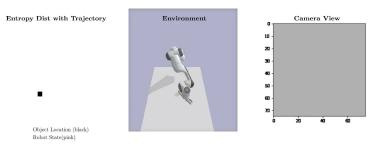
- 1. A tutorial on both ergodic metrics and ergodic control
 - 1. Assumes no background in ergodic...anything
- 2. How to use some standard implementations of ergodic control
 - 1. Starting with SMC, trajectory optimization, sampling-based methods, diffusion equations
- 3. Applications, applications, applications
 - 1. HRI, distributed search, manipulation, machine perception, reinforcement learning ... robotics has a lot to gain from ergodic control
- 4. We will end with design approaches and current challenges.

We Will Also Learn Other Things!

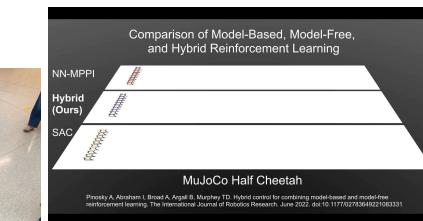
Murphey, 2018

DrozBot (Calinon, 2022)

08:45-09:00	Welcome and Introduction	(Todd)
09:00-09:15	Why do we care about ergodic control?	(3-min pitches by organizers)
09:15-09:35	Technical introduction to ergodic control	(Katie)
09:35-09:55	Implicit Q&A	(Ian)
09:55-10:00	Teaser	(Guillaume)
10:00-10:30	Coffee break with posters presentations	
10:30-11:00	Sandbox codes	(Todd, Muchen)
11:0-11:20	Traj-Opt/Direct transcription	(Ian, Henry)
11:20-11:40	Ergodic control using diffusion, HEDAC	(Stefan)
11:40-11:55	Ergodic control in 1D, 2D, 3D and more!	(Sylvain)
11:55-12:00	Teaser	(Guillaume)
12:00-13:00	Lunch break (lunch boxes available)	
13:00-13:20	Sampling-based approaches	(Todd, Guillaume, Muchen)
13:00-13:20 13:20-13:45	Sampling-based approaches Applications: HRI and biology	(Todd, Guillaume, Muchen) (Katie)
13:20-13:45	Applications: HRI and biology	(Katie)
13:20-13:45 13:45-14:10	Applications: HRI and biology Applications: Search with UAVs	(Katie) (Stefan)
13 :20-13 :45 13 :45-14 :10 14 :10-14 :35	Applications: HRI and biology Applications: Search with UAVs Applications: Duration, reachability and optimality in exploration	(Katie) (Stefan) (Ian, Henry)
13:20-13:45 13:45-14:10 14:10-14:35 14:35-15:00	Applications: HRI and biology Applications: Search with UAVs Applications: Duration, reachability and optimality in exploration Applications: Whole body exploration, insertion tasks, drawing, HEDAC on point clouds	(Katie) (Stefan) (Ian, Henry) (Sylvain)
13:20-13:45 13:45-14:10 14:10-14:35 14:35-15:00 15:00-15:25	Applications: HRI and biology Applications: Search with UAVs Applications: Duration, reachability and optimality in exploration Applications: Whole body exploration, insertion tasks, drawing, HEDAC on point clouds Applications: Runtime robot learning of neural networks for perception and RL	(Katie) (Stefan) (Ian, Henry) (Sylvain) (Todd)
13:20-13:45 13:45-14:10 14:10-14:35 14:35-15:00 15:00-15:25 15:25-15:30	Applications: HRI and biology Applications: Search with UAVs Applications: Duration, reachability and optimality in exploration Applications: Whole body exploration, insertion tasks, drawing, HEDAC on point clouds Applications: Runtime robot learning of neural networks for perception and RL Teaser	(Katie) (Stefan) (Ian, Henry) (Sylvain) (Todd)
13:20-13:45 13:45-14:10 14:10-14:35 14:35-15:00 15:00-15:25 15:25-15:30 15:30-16:00	Applications: HRI and biology Applications: Search with UAVs Applications: Duration, reachability and optimality in exploration Applications: Whole body exploration, insertion tasks, drawing, HEDAC on point clouds Applications: Runtime robot learning of neural networks for perception and RL Teaser Coffee break with posters presentations	(Katie) (Stefan) (Ian, Henry) (Sylvain) (Todd) (Guillaume)
13:20-13:45 13:45-14:10 14:10-14:35 14:35-15:00 15:00-15:25 15:25-15:30 15:30-16:00 16:00-16:20	Applications: HRI and biology Applications: Search with UAVs Applications: Duration, reachability and optimality in exploration Applications: Whole body exploration, insertion tasks, drawing, HEDAC on point clouds Applications: Runtime robot learning of neural networks for perception and RL Teaser Coffee break with posters presentations Multi-Robot Coverage	(Katie) (Stefan) (Ian, Henry) (Sylvain) (Todd) (Guillaume)


MURPHEY ERGODIC PITCH

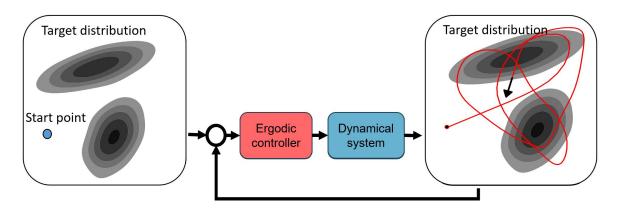
Todd Murphey Mechanical Engineering Physical Therapy and Human Movement Sciences Center for Robotics and Biosystems Northwestern University

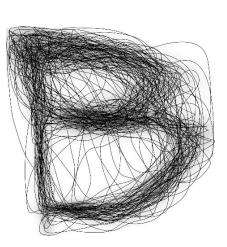

Northwestern CENTER FOR ROBOTICS


Unsupervised Physical Learning

Robots create perception pipelines through automated data collection, and ergodic control **guides** sensory experience without supervision.

The robot's motion is ergodic with respect to the spatially distributed entropy



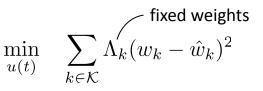

Sylvain Calinon's Ergodic Pitch

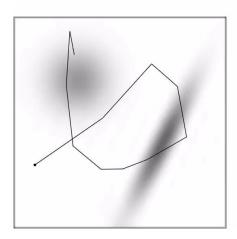
Ergodic control: Why is it exciting ?

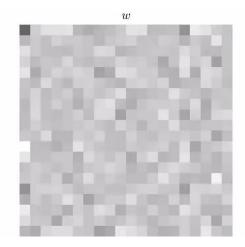
Generality of the formulation: Tracking as special case of ergodic control

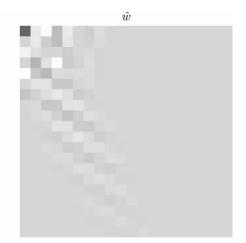
Natural exploration without any randomness!

Ergodic control: Why is it exciting ?

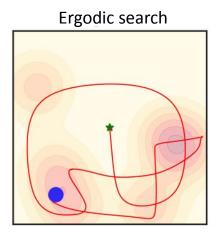

Ergodicity: Difference between the time-averaged spatial statistics of the agent's trajectory and the target distribution to search in

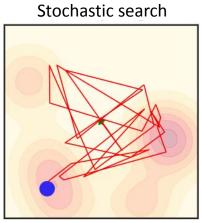

→ Simple yet powerful principle!

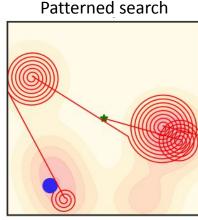

Input: Spatial distribution *Output:* Control commands


Simple cost:

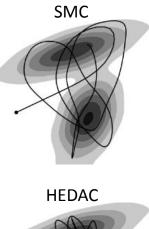
Matching Fourier series coefficients






Ergodic control: Why is it exciting ?

- **Deep fundamental challenges** linking machine learning, optimal control, signal processing and information theory
- Achieves manipulation tasks robustly, by not only relying on accurate sensors, but instead using a control strategy to cope with limited or inaccurate sensing information
- Different from stochastic or patterned search! → Provides a natural way of searching





 \rightarrow does not take into account motion cost!

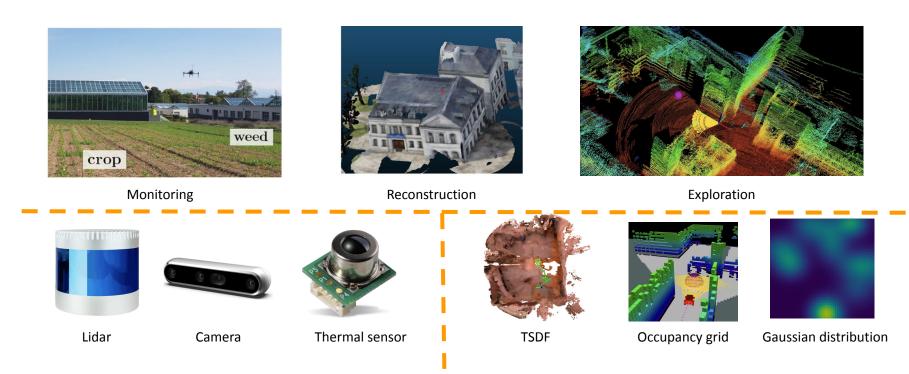
→ optimal only when duration is known!

Guillaume's Ergodic Pitch

Guillaume Sartoretti

Assistant Professor, National University of Singapore

http://www.marmotlab.org

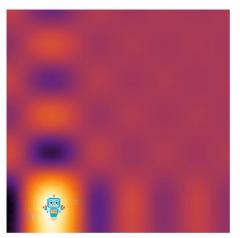


National University of Singapore

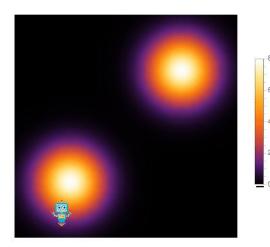
Informative Path Planning (IPP)

14

Popović, Marija, et al. "An informative path planning framework for UAV-based terrain monitoring." Autonomous Robots 44.6 (2020): 889-911.

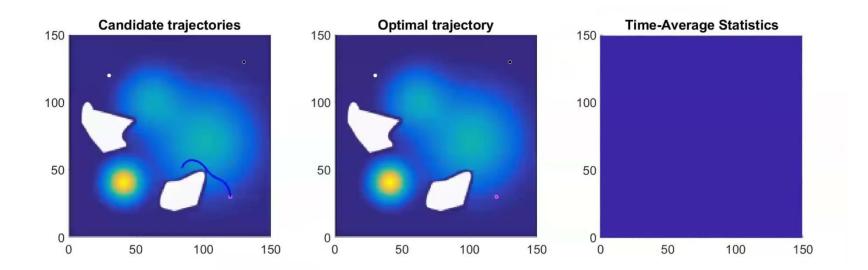

Schmid, Lukas, et al. "An efficient sampling-based method for online informative path planning in unknown environments." *IEEE Robotics and Automation Letters* 5.2 (2020): 1500-1507.

Can Muhana at al "Dean Deinfersonant Learning based Lerre anale Dabet Europeation " IEEE Dabetics and Automation Letters (2024)


Single-Agent Ergodic Coverage

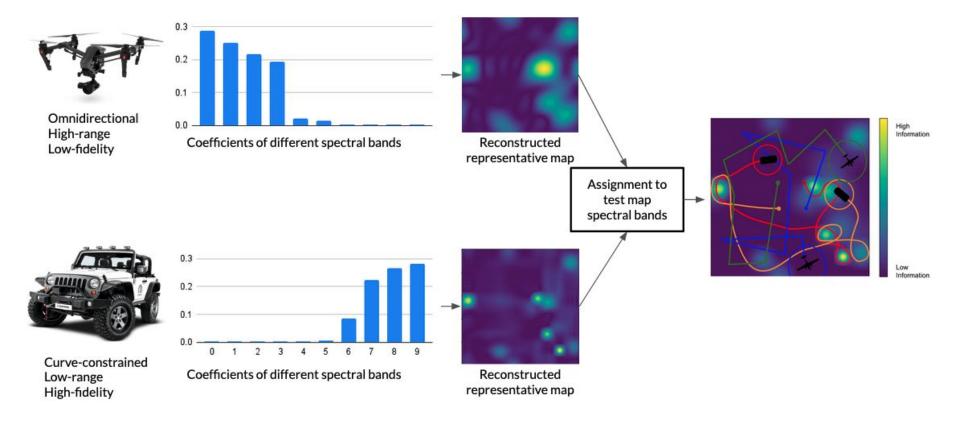
$$\boldsymbol{\Phi}(\boldsymbol{\gamma},\boldsymbol{\xi}) = \sum_{k=0}^{m} \alpha_k (c_k (\boldsymbol{\gamma}(t)) - \boldsymbol{\xi}_k)^2$$

Find **controls** that **minimize** the ergodic metric subject to **dynamic constraints**



$$\boldsymbol{u}^* = \arg \min_u \boldsymbol{\Phi}(\boldsymbol{\gamma}, \boldsymbol{\xi})$$

subject to $\dot{\boldsymbol{q}} = f(\boldsymbol{q}(t), \boldsymbol{u}(t))$



Multi-Agent Ergodic Coverage

$$\boldsymbol{\Phi}(\boldsymbol{\gamma},\boldsymbol{\xi}) = \sum_{k=0}^{m} \alpha_k (c_k \big(\boldsymbol{\gamma}(t) \big) - \boldsymbol{\xi}_k)^2$$

Heterogeneous Multi-Agent Coverage

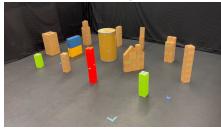
A Path Towards Deterministic and Intentional Robotic Exploration

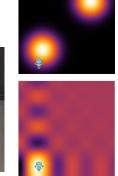
lan Abraham,

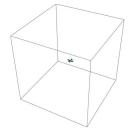
Asst. Prof Mechanical Engineering and Computer Science,

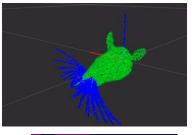
Yale University

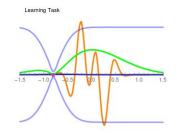
Yale school of engineering & Applied science


Why Ergodic Control is Exciting!


Ergodic Exploration/Search


- Deterministic Exploratory Behaviors
- Nonlinear/nonconvex problem with many "good" local minima
 - Many solutions to the same problem
- Independent of robot dynamics/spatial scale/sensor/information measure
 - We can analyze exploration from a more general perspective
- Non-Myopic Exploration (formulated over long planning horizons)


[ICRA 2024] Seewald, et al. "Energy-Aware Ergodic Search: Continuous Exploration for Multi-Agent Systems with Battery Constraints."
[RSS 2023] Dong, et. al. "Time-Optimal Ergodic Search"
[ICRA 2023] Lerch, et. al. "Safety-critical ergodic exploration in cluttered environments via control barrier functions
[TASE 2023] Abraham, et. al. "An ergodic measure for active learning from equilibrium."


Yale school of engineering & Applied science

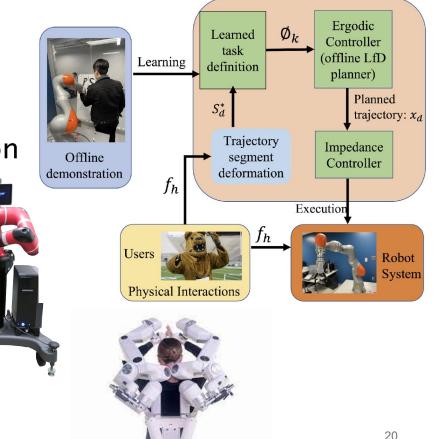
Ergodic Control facilitates Human Robot Interaction

Rehabilitation Robotics

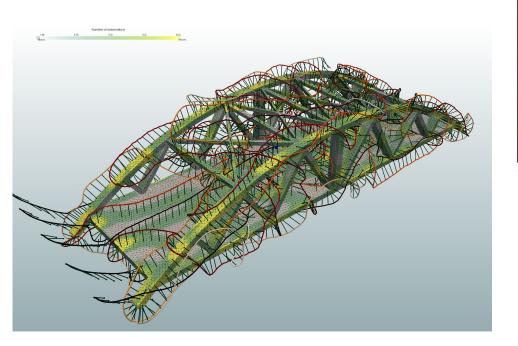
accept

reject

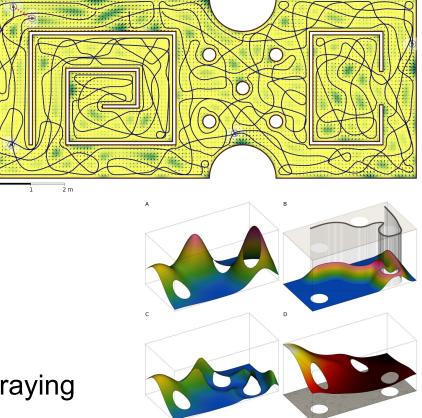
replace F_{robot}

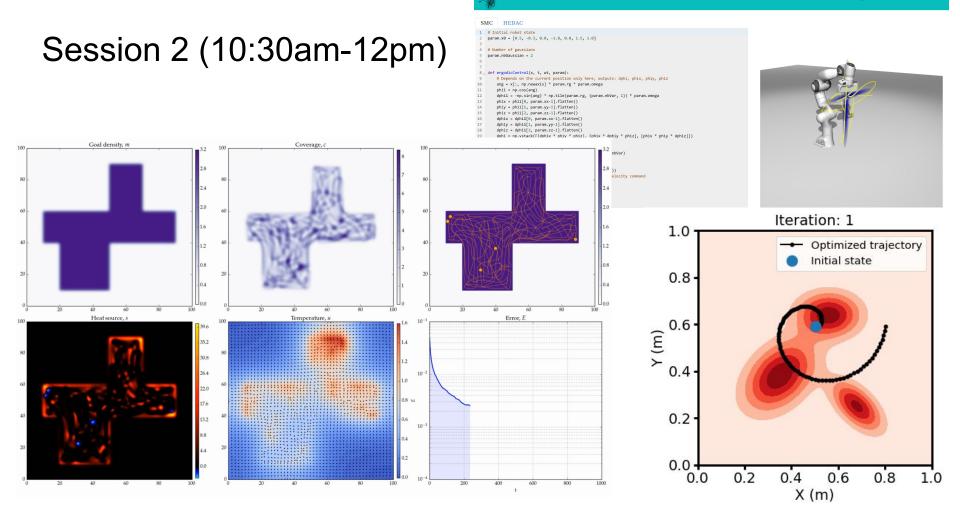

Frobot

Fuser


F_{user}

F_{user}/


- Virtual Training & Haptics
- Learning From Demonstration



Stefan's pitch: Ergodic control driven by the heat equation

Applications: UAV search, surveying, spraying

