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Definitions of Ergodicity

Markov Chains A state in a Markov chain is ergodic if you
have a nonzero probability of exiting the state and the
probability of eventually returning is 1. If all states are
ergodic, the chain is ergodic.

Signal Analysis A process is ergodic if the time average of a
signal is equal to the average across an ensemble if signals.

Dynamic Systems A system is ergodic if it has the same
behavior averaged over time as it does averaged over the
space of system states.

In this workshop, we will be referring to the ergodicity of a
trajectory x(t) with respect to a distribution ϕ(x)
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What makes a trajectory ergodic?

A trajectory is perfectly ergodic with respect to a distribution if the
amount of time spent a neighborhood N of the state space is
proportional to the spatial distribution in the neighborhood

∫
Nϕ(s)ds.
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Quantifying Ergodic trajectories

Given a trajectory and distribution in the rectangular domain U

Define a set B(s, r) and I(s,r)(y) =

{
1 inside B(s, r)

0 o.w .

The average time spent in the set B(s, r) is

d t(s, r) =
1

t

∫ t

0
I(s,r)(x(τ))dτ.

The measure of the distribution on the same set is given by

ϕ̄(s, r) =

∫
U
ϕ(y)I(s,r)(y)dy .
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Quantifying Ergodic trajectories

If the trajectory is ergodic,

lim
t→∞

d t(s, r) = ϕ̄(s, r) for any pair of (s, r)

.

lim
t→∞

d t(s, r)− ϕ̄(s, r) = 0

.
Must also be true for the infinite sum of these pairs

E 2(t) =

∫ R

0

∫
U
(d t(s, r)− ϕ(s, r))2dsdr , R > 0.

This metric tells us the distance from ergodicity
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Construct a trajectory distribution

Let’s consider instead an alternative way to represent the
trajectory, by constructing a distribution,

C (x) =
1

t

∫ t

0
δ(x − x(τ))dτ,

The inner product or C with any function f is

⟨C , f ⟩ = 1

t

∫ t

0
f (x(τ))dτ.

*So we could rewrite average time spent in B(s, r) as

d t(s, r) = ⟨C , I(s,r)⟩

.
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Construct a trajectory distribution

Let’s write the Fourier coefficients of x(t) as

ck = ⟨C ,Fk⟩ =
1

T

∫ T

0
Fk(x(t))dt,

using Fourier basis functions of the form,

Fk(x(t)) =
1

hk

n∏
i=1

cos

(
kiπ

Li
xi (t)

)
.

x(t) is n-dimensional

k is multi-index over the coefficients of the multi-dimensional
Fourier transform

Li is a measure of the length of the dimension.

hk is a normalizing factor that make Fk an orthonormal basis
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Construct a trajectory distribution

Let’s write the Fourier coefficients of x(t) as

ck = ⟨C ,Fk⟩ =
1

T

∫ T

0
Fk(x(t))dt,

using Fourier basis functions of the form,

Fk(x(t)) =
1

hk

n∏
i=1

cos

(
kiπ

Li
xi (t)

)
.

In 2 dimensions, hk takes the form,

hk =

(∫ L1

0

∫ L2

0
cos2(

k1π

L1
x1)cos

2(
k2π

L2
x2)dx1dx2

)1/2

.
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Defining a metric

Using the same basis functions, we can compute the coefficients of
the spatial distribution,

ϕk = ⟨ϕ(x),Fk⟩ =
∫
X
ϕ(x)Fk(x)dx

Now, the Fourier representations of C and ϕ are in the same
vector space.
The distance between C and ϕ(x) is

ε(t) =
K∑

k1=0

...
K∑

kn=0

Λk |ck − ϕk |2

The coefficient Λk = (1 + ||k||2)−s where s = n+1
2 places larger

weights on lower frequency information.
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Defining a metric

Requiring

lim
t→∞

ε = 0

is equivalent to requiring the
time average of the trajectory to
converge to the spatial averages
of distribution.

It can be shown that ε(t) and E (t) are equivalent metrics, since
there exists bounded constants such that

C1ε(t) ≤ E 2(t) ≤ C2ε(t).
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Spectral Multiscale Coverage

If the aim is to control agents with linear dynamics to cover a
region uniformly, one can design a feedback law that drives the
agents to take actions that maximize the rate of decay of the
ergodic metric.

Fitzsimons, Katie Introduction to Ergodic Control



Ergodic Metric as a cost function

Given a system with dynamics,

ẋ = f (x(t), u(t)), x(0) = x0.

Instead of

J =

∫ t

0
l(x , u)dt =

∫ t

0
(xd − x)TQ(xd − x) + uTRu dt,

We use the ergodic metric

J(x(t), u(t)) = q ε(x(t)) +

∫ T

0
u(t)TRu(t)dt

= q
K∑

k1=0

...
K∑

kn=0

Λk

(
1

T

∫ T

0
Fk(x(t))dt − ϕk

)2

+

∫ T

0
u(t)TRu(t)dt.
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Derivative of an Ergodic Objective

We can find the gradient by taking the directional derivative of:

d

dϵ
J(ξ + ϵζ)|ϵ=0 =

d

dϵ

[
q

K∑
k=0

Λk

(
1

T

∫ T

0
Fk(x(s) + ϵz(s))dt − ϕk

)2

+

∫ T

0
(u(t) + ϵv(t))TR(u(t + ϵv(t))dt

]
ϵ=0
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Derivative of an Ergodic Objective

Let’s focus on the ergodic term for now

d

dϵ
q ε(x(t) + ϵz(t))|ϵ=0 =

d

dϵ

[
q

K∑
k=0

Λk

(
1

T

∫ T

0
Fk(x(s) + ϵz(s))dt − ϕk

)2
]
ϵ=0
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d

dϵ
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q
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2

(
1

T
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)
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0

1

T
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Derivative of an Ergodic Objective

d

dϵ
q ε(x(t) + ϵz(t))|ϵ=0 =

q
K∑

k=0

Λk

[
2

(
1

T

∫ T

0
Fk(x(s))ds − ϕk

)
·
∫ T

0

1

T
DFk(x(t))z(t)dt

]

DJ(ξ) · ζ =

∫ T

0
q

K∑
k=0

Λk

[
2

(∫ T

0

1

T
Fk(x(s))ds − ϕk

)
· 1

T
DFk(x(t))

]
· z(t) + R(t)u(t) · v(t)dt
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Derivative of an Ergodic Objective

DJ(ξ) · ζ =

∫ T

0
q

K∑
k=0

Λk

[
2

(∫ T

0

1

T
Fk(x(s))ds − ϕk

)
· 1

T
DFk(x(t))

]
· z(t) + R(t)u(t) · v(t)dt

When this derivative is close to zero, we have found a local
extrema, and we can set up an LQ problem.
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Summary of the Spectral Ergodic Metric

Write the Fourier coefficients of x(t) as

ck = ⟨C ,Fk⟩ =
1

T

∫ T

0
Fk(x(t))dt,

Using the same basis functions, we can compute the coefficients of
the spatial distribution,

ϕk = ⟨ϕ(x),Fk⟩ =
∫
X
ϕ(x)Fk(x)dx

So the distance from perfect ergodicity is

ε(t) =
K∑

k1=0

...

K∑
kn=0

Λk |ck − ϕk |2

Fitzsimons, Katie Introduction to Ergodic Control


