Ergodic control (SMC) in $1 D$

Notation and reference

Robotics Codes From Scratch.

https://rcfs.ch

[Calinon, S. (2019). Mixture Models for the Analysis, Edition, and Synthesis of Continuous Time Series. Mixture Models and Applications, Springer]

Superposition with basis functions

Radial basis functions

Bernstein polynomials

Fourier series

Ergodic control in $1 D$

Fourier series: Symmetry property

$$
\begin{aligned}
g(x) & =\sum_{k} w_{k} \phi_{k}(x) \quad \phi_{k}(x)
\end{aligned}=\frac{1}{L} \exp \left(-i \frac{2 \pi k x}{L}\right)
$$

Symmetry property:

If $g(x)$ is real and even, $\phi_{k}(x)$ is also real and even.
It then simplifies to $\phi_{k}(x)=\frac{1}{L} \cos \left(\frac{2 \pi k x}{L}\right)$.
In practice, we only need to evaluate on the range $k \in[0, \ldots, K-1]$, as the basis functions are even.
We then have $g(x)=w_{0}+\sum_{k=1}^{K-1} w_{k} 2 \cos \left(\frac{2 \pi k x}{L}\right)$, by exploiting $\cos (0)=1$.

Fourier series: Symmetry property

$$
\begin{aligned}
& g(x)=\sum_{k} w_{k} \phi_{k}(x) \quad \phi_{k}(x)=\frac{1}{L} \exp \left(-i \frac{2 \pi k x}{L}\right) \\
& =\frac{1}{L}\left(\cos \left(\frac{2 \pi k x}{L}\right)-i \sin \left(\frac{2 \pi k x}{L}\right)\right)
\end{aligned}
$$

Fourier series: Gaussian property

$$
\begin{aligned}
g(x) & =\sum_{k} w_{k} \phi_{k}(x) \quad \phi_{k}(x)
\end{aligned}=\frac{1}{L} \exp \left(-i \frac{2 \pi k x}{L}\right) .
$$

Gaussian property:

If $g_{0}(x)=\mathcal{N}\left(x \mid 0, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)$ is mirrored to create a real and even periodic function $g(x)$ of period $L \gg \sigma$, the corresponding Fourier series coefficients are of the form $w_{k}=\exp \left(-\frac{2 \pi^{2} k^{2} \sigma^{2}}{L^{2}}\right)$.

Fourier series: Gaussian property

$$
\begin{aligned}
g(x) & =\sum_{k} w_{k} \phi_{k}(x) \quad \phi_{k}(x)
\end{aligned}=\frac{1}{L} \exp \left(-i \frac{2 \pi k x}{L}\right)
$$

Fourier series: Sum property

Combination property:

If $w_{k, 1}$ (resp. $w_{k, 2}$) are the Fourier series coefficients of a function $g_{1}(x)$ (resp. $g_{2}(x)$), then $\alpha_{1} w_{k, 1}+\alpha_{2} w_{k, 2}$ are the Fourier coefficients of $\alpha_{1} g_{1}(x)+\alpha_{2} g_{2}(x)$.

Fourier series: Sum property

$$
\begin{aligned}
g(x) & =\sum_{k} w_{k} \phi_{k}(x) \quad \phi_{k}(x) \\
= & \frac{1}{L} \exp \left(-i \frac{2 \pi k x}{L}\right) \\
& =\boldsymbol{w}^{\top} \boldsymbol{\phi}(x) \\
& =\frac{1}{L}\left(\cos \left(\frac{2 \pi k x}{L}\right)-i \sin \left(\frac{2 \pi k x}{L}\right)\right)
\end{aligned}
$$

Ergodic control (SMC) in $2 D$

Ergodic control in $2 D$

$$
g(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{\phi}(\boldsymbol{x})
$$

$$
\phi_{k}(x)=\frac{1}{L} \exp \left(-i \frac{2 \pi k x}{L}\right)
$$

$\phi_{\boldsymbol{k}}(\boldsymbol{x})=\frac{1}{L^{D}} \prod_{d=1}^{D} \exp \left(-i \frac{2 \pi k_{d} x_{d}}{L}\right)$

Ergodic control in $2 D$

aussian property

\downarrow Discretization

Symmetry property
Shift property
Combination property

$$
\hat{w}_{\boldsymbol{k}}=\int_{\boldsymbol{x} \in \mathcal{X}} \hat{g}(\boldsymbol{x}) \phi_{\boldsymbol{k}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

Generating a symmetric signal in 1D

Ergodic control in $2 D$

$$
\min _{\boldsymbol{u}(t)} \sum_{\boldsymbol{k} \in \mathcal{K}} \Lambda_{\boldsymbol{k}}\left(w_{\boldsymbol{k}}-\hat{w}_{\boldsymbol{k}}\right)^{2}
$$

$$
\boldsymbol{u}=\tilde{\boldsymbol{u}}(t) \frac{u^{\max }}{\|\tilde{\boldsymbol{u}}(t)\|}, \quad \text { with } \quad \tilde{\boldsymbol{u}}=-\sum_{\boldsymbol{k} \in \mathcal{K}} \Lambda_{\boldsymbol{k}}\left(w_{\boldsymbol{k}}-\hat{w}_{\boldsymbol{k}}\right) \nabla_{\boldsymbol{x}} \phi_{\boldsymbol{k}}(\boldsymbol{x}(t))^{\top}
$$

https://ergodiccontrol.github.io/sandbox.html
https://ergodiccontrol.github.io/sandbox3d.html

Ergodic control (SMC) in $6 D$

Ergodic control for more than 3 dimensions

\qquad
\qquad

Separation of variables: a factorization problem

Matrix factorization with standard linear algebra:

(singular value decomposition)

Rank-1 decomposition:

$$
\boldsymbol{X}_{i, j}=\boldsymbol{U}_{i} \boldsymbol{V}_{j} \rightarrow \text { Representation in a separable form }
$$

Rank-R decomposition:

$$
\boldsymbol{X}_{i, j}=\sum_{r=1}^{R} \boldsymbol{U}_{i, r} \boldsymbol{V}_{j, r} \quad \underset{\text { (in matrix form) }}{\boldsymbol{X}=\boldsymbol{U} \boldsymbol{V}^{\top}}
$$

Extension to data with more indices (tensors):

$$
\boldsymbol{X}_{i, j, k, \ldots}=\sum_{r=1}^{R} \boldsymbol{U}_{i, r} \boldsymbol{V}_{j, r} \boldsymbol{W}_{k, r} \cdots
$$

(CP decomposition)

Data structured as tensors

Matrix factorization with standard linear algebra:

Ivan Oseledets
(Skolkovo Institute
of Science and
Technology)

Ergodic exploration (Spectral Multiscale Coverage)

Control Command: $\quad u_{j}(t) \propto\left\langle\Lambda *(\hat{\mathcal{W}}-\mathcal{W}(t)), \nabla_{j} \Phi(x(t))\right\rangle$
Ergodic control can scale!

Weight Tensor:
^
x $\mathcal{O}\left(K^{d}\right)$
$\checkmark \mathcal{O}(K d)$
Basis Function Gradient: $\quad \nabla_{j} \Phi(x(t)) \quad \times \mathcal{O}\left(K^{d}\right) \quad \checkmark \mathcal{O}(K d)$

$$
\begin{array}{clll}
\text { Fourier Coefficients: } & \hat{\mathcal{W}} & \boldsymbol{x} \boldsymbol{\mathcal { O } (K ^ { d })} & \sqrt{ } \mathcal{O}\left(K d r^{2}\right) \\
\hat{\mathcal{W}}_{k}=\int_{x_{1}=0}^{L} \ldots \int_{x_{d}=0}^{L} P(x) \Phi_{k}(x) d x_{1} \ldots d x_{d} & \mathcal{W}(t) & \times \mathcal{O}\left(K^{d}\right) & \checkmark \mathcal{O}\left(K d r^{2}\right)
\end{array}
$$

$$
\mathcal{W}_{k}(t)=\frac{1}{t} \int_{\tau=0}^{t} \boldsymbol{\Phi}_{\boldsymbol{k}}(\boldsymbol{x}(\tau)) d \tau
$$

Curse of Dimensionality Storage \& Computation

Computation time (for $K=5$)

Time taken to compute Fourier series coefficients

Time taken to compute control commands

