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Informative Path Planning (IPP)

Monitoring

| e

Lidar Camera Thermal sensor

Occupancy grid Gaussian distribution

Popovi¢, Marija, et al. "An informative path planning framework for UAV-based terrain monitoring." Autonomous Robots 44.6 (2020): 889-911.
Schmid, Lukas, et al. "An efficient sampling-based method for online informative path planning in unknown environments." IEEE Robotics and Automation Letters 5.2 (2020): 4
1500-1507.
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Informative Path Planning (IPP)

Goal: plan the path of a mobile robot, to efficiently gather sensor
measurements in a known/unknown environment and reconstruct
some underlying distribution of interest.

e Non-adaptive IPP: the environment is known — one-shot plan.
e Adaptive IPP: the environment is unknown or partially known.

Cao, Yuhong, et al. "CAtNIPP: Context-aware attention-based network for informative path planning." Conference on Robot Learning. PMLR, 2023.
Cao, Yuhong, et al. "Deep Reinforcement Learning-based Large-scale Robot Exploration." IEEE Robotics and Automation Letters (2024).


https://docs.google.com/file/d/1_bRUiisA3LVyLigZnjJcMarAwCaLHn6y/preview
https://docs.google.com/file/d/1nKGMalyrE0-_QpLyg7kR9FHpJXmsyagl/preview

Existing Methods
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Wong, EI-Mane, Frédéric Bourgault, and Tomonari Furukawa. "Multi-vehicle Bayesian search for multiple lost targets." Proceedings of the 2005 ieee international conference on robotics and
automation. IEEE, 2005.

Hollinger, Geoffrey A., and Gaurav S. Sukhatme. "Sampling-based robotic information gathering algorithms." The International Journal of Robotics Research 33.9 (2014): 1271-1287.

Arora, Sankalp, and Sebastian Scherer. "Randomized algorithm for informative path planning with budget constraints." 2017 IEEE International Conference on Robotics and Automation (ICRA). |IEEE,
2017.
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Measurements and Agent Map/Belief
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2D Gaussian Process as agent belief - bredict mean
o Represent a continuous distribution i
by interpolating between discrete oo
measurements.
e Provide a measure of uncertainty to
assess the accuracy of interpolations.
o Model sensor capacity through the kernel .. mede 2
function.
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Trajectory Optimization for Ergodic Coverage

Find controls E = arg min, @ (y, &)

subjectto g = f(q(t), u(t))

[1] Mathew, G., Mezic, I1.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Physica D: Nonlinear Phenomena 240(4), 432-442 (2011)



Trajectory Optimization for Ergodic Coverage

Find controls that

o _ _ u* =|argminu<b(y, f)l
minimize the ergodic metric

subjectto g = f(q(t), u(t))

[1] Mathew, G., Mezic, I1.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Physica D: Nonlinear Phenomena 240(4), 432-442 (2011)
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Trajectory Optimization for Ergodic Coverage

Find controls that
minimize the ergodic metric
subject to dynamic constraints

u’ = argmin, @(y,¢)
subject tolq = f(q(t), u(t))l

o o @

[1] Mathew, G., Mezic, I1.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Physica D: Nonlinear Phenomena 240(4), 432-442 (2011) "



Background on Ergodic Trajectory
Optimization

We seek a long-term path that minimizes the ergodic metric

m

D(y,$) = Z ar(cx(¥(8)) — &)?

k=0

[1] Mathew, G., Mezic, I.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Physica D: Nonlinear Phenomena 240(4), 432-442 (2011)
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Background on Ergodic Trajectory
Optimization

We seek a long-term path y that minimizes the ergodic metric

m

d(y &) = Z ar(cx(¥(8)) — &)?

k=0

Y = [X0, s X7-1]

Robot trajectory

[1] Mathew, G., Mezic, I.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Physica D: Nonlinear Phenomena 240(4), 432-442 (2011)
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Background on Ergodic Trajectory
Optimization

We seek y that minimizes the ergodic metric

m

D(y &) = Z ar(cx(¥(8)) — &)?

k=0

Y = [x0, o) X7-1] $(x)
Robot trajectory  Utility function

[1] Mathew, G., Mezic, I.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Physica D: Nonlinear Phenomena 240(4), 432-442 (2011) 14



Background on Ergodic Trajectory
Optimization

We seek y that minimizes the ergodic metric

Optimal trajectory Time-Average Statistics
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~ Time-Average Statistics

T -1
1
Y = [X0, s X7-1] £(x) c(r(®) = T ; Fie(x¢)

Robot trajectory  Utility function Time-averaged
trajectory statistics

[1] Mathew, G., Mezic, I1.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Physica D: Nonlinear Phenomena 240(4), 432-442 (2011) 15



Background on Ergodic Trajectory

Optimization

We seek y that minimizes the ergodic metric

k=0

Y = [X0, s X7-1]

Robot trajectory

[1] Mathew, G., Mezic, I.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Physica D: Nonlinear Phenomena 240(4), 432-442 (2011)
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trajectory statistics

Utility distribution

16




Background on Ergodic Trajectory

Optimization
m = 100
We seek y that minimizes the ergodic metric Number of Fourier
- coefficients
Dy ¢) = Z aka()’(t) —2
k=0
T -1
() =7 Y Fex)
Crly == X —
¥ = [Xg, ) X71] £(x) k TL Sk : Fie(x)§(x)dx
Robot trajectory  Utility function Time-averaged Utility distribution

trajectory statistics

[1] Mathew, G., Mezic, I1.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Physica D: Nonlinear Phenomena 240(4), 432-442 (2011) 17



Background on Ergodic Trajectory

Optimization
m = 100
We seek y that minimizes the ergodic metric Number of Fourier
m coefficients
D(y &) = Z aka()/(t) —2 ay = \/(1 + k2)—(d+1)
k=0
normalizing
coefficients
T -1
() =7 Y Fxo)
Ck\Y == k(X =
Y =[x, - X7-4] §(x) T L 1 Sk y Fr(x)§(x)dx
Robot trajectory  Utility function Time-averaged Utility distribution

trajectory statistics

[1] Mathew, G., Mezic, I1.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Physica D: Nonlinear Phenomena 240(4), 432-442 (2011) 18
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Dynamics-Aware Optimization

nt dynamics, the constrained optimization system
xactly solved to obtain optimal controls (e.qg., [2]):

o ®

u* = arg min, @(y, &)
subjectto g = f(q(t), u(t))

However, for general cases, and at lower computational cost:

Stochastic Trajectory Optimization

[2] Miller, L. M., & Murphey, T. D. (2013). Trajectory optimization for continuous ergodic exploration. In 2013 American Control Conference (pp. 4196-4201). 20



Stochastic Trajectory Optimization

Deterministic vs Stochastic trajectory optimization

e DTO: Artificial Potential Field, A*, etc.
e STO: Rapidly exploring random tree, Particle swarm optimization,

Simulated annealing, Bayesian optimization, etc.

RRT [5]

We will focus on sampling-based, cross-entropy planning [3]

[3] Kobilarov, M. (2012). Cross-Entropy Randomized Motion Planning. Robotics: Science and Systems VII, 153.
[4] Fedele, G. (2018). Obstacles avoidance based on switching potential functions. Journal of Intelligent & Robotic Systems, 90, pp.387-405.

[5] LaValle, Steven M. (1998). Rapidly-exploring random trees: A new tool for path planning. Technical Report (TR 98-11).
[6] Axel Thevenot. https://towardsdatascience.com/particle-swarm-optimization-visually-explained-46289eeb2e14
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Sampling-based Cross-Entropy Planning

Formulation
e Sample a vector z from a Gaussian mixture model p(z;v)

| T -1
e~ 2(z=hp)" oy (2=pp)

Z 7 /(2n) "Z|Zk|

e Sample a set of tra ectories, and evaluate the |
cost function J(z) (here, the Ergodic metric).

Different Sensor
Models

Optimal trajectory Time-Average Statistics Time-Average Statistics
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[3] Kobilarov, M. (2012). Cross-Entropy Randomized Motion Planning. Robotics: Science and Systems VII, 153.



Sampling-based Cross-Entropy Planning

Formulation

e Sample a vector z from a Gaussian mixture model p(z;v)
K

) — Wk L) o )
p(Z7 U) T e ? g K g
1; V (2m)= |y

e Sample a set of trajectories, and evaluate the cost
function J(z) (here, the Ergodic metric).

e use a subset of elite trajectories (e.qg., best 20%) and update v

e after some iterations, p(z;v) tends to a delta distribution,
yielding (near-)optimal paths wrt Ergodicity.

[3] Kobilarov, M. (2012). Cross-Entropy Randomized Motion Planning. Robotics: Science and Systems VII, 153. 23



Example: Ergodic Coverage by UGVs

Dubins car model with state g = (x, y, 6) of coordinates and

orientation :
i = ucosh, 1y =usinf, O=uv

Define primitives based on forward velocity v and turning rate w
(based on the agent’s dynamics)

e straight lines (constant velocity v, and w = 0)
e arcs of radius v/w (v,w # 0)

Importance sampling and evaluation

e Path: sequences of primitives (z = [vl, wl, v2, w2, ..., vnh, wn])
e calculate ergodicity and update Gaussian mixture model
e iterate above steps until convergence/fixed # of iterations

[3] Kobilarov, M. (2012). Cross-Entropy Randomized Motion Planning. Robotics: Science and Systems VII, 153. 24



Sampling-based Cross-Entropy Ergodic Planning

Candidate trajectories Optimal trajectory
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[7] https://github.com/biorobotics/stoec
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[8] Ayvali, E., Salman, H., & Choset, H. (2017, September). Ergodic coverage in constrained environments using stochastic trajectory optimization. IROS 2017, (pp. 5204-5210).


https://docs.google.com/file/d/1V5LL98FKk1peyU-_TOwXOgSt8Cy1ureU/preview

Sampling-based Cross-Entropy Ergodic Planning

Candidate trajectories Optimal trajectory

Time-Average Statistics
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[7] https://github.com/biorobotics/stoec
[8] Ayvali, E., Salman, H., & Choset, H. (2017, September). Ergodic coverage in constrained environments using stochastic trajectory optimization. IROS 2017, (pp. 5204-5210).
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https://docs.google.com/file/d/13-oU2KBgi4lIEIGSIrZrqNs2o4qDauq7/preview

Summary

1. Single-agent coverage can greatly benefit from Ergodicity when
a prior over the domain is available:

. Avoids myopic decision-making, by naturally balancing
exploration and exploitation in spectral domain (long-term,
large-scale).

2. More complex agent dynamics can be handled via stochastic
trajectory optimization (e.g., sampling-based methods):

. Linear cost in number of sample.
. Sub-/Near-optimal results.
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