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HUMAN ROBOT INTERACTION

=Rehabilitation Robotics
=Virtual Training & Haptics
"[earning From Demonstration




VARIATION IN HUMAN MOTION

= Substantial variation between
equally successful trials within
and between individuals

= Using statistical representations
of the task enables one to use
information measures to assess
the quality of motion.

Human Subject Trials
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Human Motion Assessment

Task-Specific Measures

= Qutcome-based (e.g., success/failure)
= Narrowly defined (e.g., work area or physical target)
" Do not generalize to other tasks

" Does not enable principled interpretation



Human Motion Assessment

Engineering Measures
" Principled interpretation

" Independent of the task

= Established control synthesis techniques

IF we have a task definition in the form of a time-series of states.
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ERGODICITY DETECTS

DEFICIT and ASSISTANCE

Target Reaching in Stroke
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ERGODICITY DETECTS

DEFICIT and ASSISTANCE
Cart-Pendulum Inversion in Healthy Subjects
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ERGODICITY DETECTS TRAINING
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— Control
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ERGODICITY DETECTS TRAINING

—Trained
—Control

= Task-specific measures
capture assistance but
not training

" Error captures training
but not assistance
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ERGODICITY DETECTS TRAINING

—Trained
—Control

= Task-specific measures
capture assistance but
not training

" Error captures training
but not assistance .
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Defining ‘Good’ Movement

Specify a goal state and choose a Use a collection of observations
probabilistic model (e.g. Dirac Delta) to form a distribution
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QUANTIFYING ERGODICITY

= Using Fourier Coefficients scales as O(|k|")
= Periodic basis functions leads to artifacts
= Alternative is a sample-based measure of the Kullback-

Leibler Divergence’

Reference Distribution
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I. Abraham, A. Prabhakar, and T.D. Murphey, “An Ergodic Measure for Active Learning fro_
on Automation Science and Engineering (2020).



QUANTIFYING TASK INFORMATION

Sample-Based K-L Divergence Measure
= Approximate the trajectory as a mixture distribution
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* Approximate the Kullback-Leibler Divergence using N
randomly sampled points
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Sample-Based K-L Divergence Measure
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HYBRID SHARED CONTROL

" Does not provide guidance or
augment error

= Selectively rejects (but does not
replace) user actions Focer

—_—

= Adapts to user needs using
task-based acceptance criteria

replace
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HYBRID SHARED CONTROL

Task-Based Criteria: Inner Product
= Compute the nominal controller, u,

= Calculate the inner product (u,, u ) Accept

= Calculate the angle ® between u,. and u, .

Reject

(uCl uuser) > 0 and CI) S y




HYBRID SHARED CONTROL

Task-Based Criteria: Mode Insertion Gradient (MIG)

Used in optimal control mode scheduling
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When the integral is negative, u, is a descent direction.



Implementing on Impedance Controller

=\When inputs are accepted,
iImpedance is 0

®"\When inputs are rejected,
damping parameter of
Impedance control is
updated

D\  [sgn(vz) 0 Avy
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ERGODIC SHARED CONTROL

Simulation Results ;" 71F
" Double Integrator
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TRAINING OUTCOMES - ERROR

RMS Error (pixels)

" Computed root mean square of d, in pixels

= ANOVA of Set 1 and Set 3 showed significant interaction effect
of training group and set

=" \F group exploited gquides leading to fixed distance from lines
I virtual Fixtures
I Hybrid Shared Control
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TRAINING OUTCOMES - ERROR

"VF group exploited g
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TRAINING OUTCOMES - ERGODICITY

= Computed using sample-based K-L Ergodic measure

= ANOVA of Set 1 and Set 3 showed significant interaction

effect of training group and set

= HSC group encoded more information about image into their
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TRAINING OUTCOMES - ERGODICITY

= HSC group encoded more information about image into their
trajectories

Gaussian Approximation of Drawinas with VF
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TRAINING OUTCOMES - COMPLETION

Completion Score

= Coded images were randomly assigned to scorers via an
online survey

= ANOVA of Set 1 and Set 3 showed significant interaction
effect of training group and set
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Ergodic Imitation Learning

= Ergodic control enables effective LfD under different initial
conditions and system constraints

" There is a natural way to add demonstrations to the set

" The task definition encompasses the variability of the set

User-provided Learned task Skill
demonstrations definition reconstruction
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Learning from pHRI
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Learning from pHRI

" We compute a trajectory deformation

based on physical interactions

" The deformed trajectory can be used as a
positive demo (A), negative demo (B), or
a combination of both (C). |




Learning from pHRI

Cup Angle Comparison
EY Uncleaned Area Comparison

Absolute angle error (degree)
Uncleaned Area Percentage
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= offline trained with 5 demonstrations W Method: PreviousNegBehavior = offline trained with 5 demonstration) WM Method: PreviousNegBehavior
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" Correction improve performance compared to offline demonstations

only with relatively few corrective demonstrations.



Mobile Sensing for Human Comfort

Fixed low-cost 1AQ
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