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Why Does Learning Need Ergodic Control?

What do robots need to learn?
* environment (e.g., active SLAM)
dynamical models (e.g., robot bodies moving)
interactions (e.g., social navigation) [nformation

perception models (e.g., ANN models of novel based control
objects with novel sensors)

task learning (e.g., embodied single-shot RL)
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What advantages do robots have? ¢
* Robots do not need to learn passively

Why does ergodicity matter? Robotic Active Learning

 ergodic control automates data collection

CENTER FOR ROBOTICS A. Taylor, T. Berrueta, and T. D. Murphey, “Active learning in robotics: A
review of control principles,” Mechatronics, vol. 77, pg. 102756, 2021.
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Robots Do Not Always Have Datasets

1. Non-traditional sensors: MRI / AFM / electrosense / tactile

2. Human-Machine Interfaces, decision support

3. Manufacturing with micro-/nano-scale non-heterogenous physics
4.Data for physical systems is almost always both scarce and sparse

5. Many physical interactions cannot be simulated

6. Austere environments will not be simulated, even with access to cloud

7. Compute needs to be synchronous for active data collect
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Ergodic Control for Perception Models
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Conditional Variational Autoencoders (CVAESs) are unsupervised learning methods that
generate a latent representation conditioned on a set of parameters; use whatever
learning model you like best, but one that predicts entropy as a function of state.

CENTER FOR ROBOTICS A. Prabhakar and T. D. Murphey, “Mechanical intelligence for learning
embodied sensor-object relationships,” Nature Communications, 2022.
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Ergodic Control for Perception Models

This simulated robot
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The robot's motion is ergodic with respect to the spatially distributed entropy

CENTER FOR ROBOTICS A. Prabhakar and T. D. Murphey, “Mechanical intelligence for learning
embodied sensor-object relationships,” Nature Communications, 2022.
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Ergodic Control for Perception Models
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_Ergodic Control for Perception Models
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“ o vision or audio, will need novel datasets.
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Real-time / Online deep learning for perception
involves compute and automated data collection The learning pipeline for all sensory modalities
can be the same, using inference and control

principles. This can be used to characterize
novel materials using new sensor technologies.
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e Upshot: ergodic control provides a way to implement
‘proportional response’ to the predicted error of a neural
network

* The robot can go and collect data while ensuring coverage and
(spatial) independence of the data

* This connects to needs in reinforcement learning....
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Maximum Diffusion Reinforcement Learning

e RL typically variation in the inputs of a R
system to generate variation in the o, W) N A{;’; ?;] s{? 2]
outputs (e.g., stochastic policies and s veed b
MaxEnt strategies) oo e - Contolabily

® The problem with this approach is that ) )

. . . . B=1.0 c 3=0.001
variation in the inputs may not create o en mae e o
very much variation in the state e ] '

® For a continuous-time process, i.i.d.
sampling is hard, we show there is an

ergodic strategy, and the optimal

strategy is diffusive ) / ) r‘ ’
1 1 . — |
Prmax[X(D] = - exp [—5 f X(T)TC‘I[x(T)]X(T)dT]
to . ‘ o . . “
® Moreover, controllability plays a critical o e oo oo "’

and explicit role o e G

T. Berrueta, A. Pinosky, T. Murphey, “Maximum diffusion reinforcement learning,”
Nature Machine Intelligence, 2024.

\ Northwestern | ENGINEERING



Maximum Diffusion Reinforcement Learnlng

MaxDiff Exploration
e A strategy that maximizes the i.i.d. 7/
property does create an ergodic z
trajectory. )—

e This is model-based in the it uses an
ANN model of the dynamics to
synthesize the optimal ergodic path

e Moreover, the exploration has to take
into account another ANN'’s estimate of
the reward landscape

50
° Time (s) p (x t)

® Agent1 ® Agent3 ® Agent5
® Agent2 ® Agent4

CENTER FOR ROBOTICS T. Berrueta, A. Pinosky, T. Murphey, “Maximum diffusion reinforcement learning,”
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Maximum Diffusion Reinforcement Learning
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CENTER FOR ROBOTICS T. Berrueta, A. Pinosky, T. Murphey, “Maximum diffusion reinforcement learning,”
Nature Machine Intelligence, 2024.
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Maximum Diffusion Reinforcement Learning
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/-\’/\__”\ PN
s =
\Y \\r\ r . D argmax E t + aS[p(x, ,Ix, ut)N(utlxt)])]
— < Pn V
e \,/_\ /—"7 T t
N—"N _ Task Diffusive
: . exploitation exploration
} >
Reward
— MaxDiff RL, 0=100 — NN-MPPI — SAC
500 +
400

300

200

Episode return

100

O L L L L
0 0.2 0.4 0.6 0.8 1.0

Environment interactions (millions)

T. Berrueta, A. Pinosky, T. Murphey, “Maximum diffusion reinforcement learning,”
Nature Machine Intelligence, 2024.
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Maximum Diffusion Reinforcement Learning

e Robustness (or : :
“Zer(l)J shot” Ie(arning) Representation transfer during deployment

is also a benefit Heavy-to-light Light-to-heavy

e This is largely an
empirical statement,
not a mathematical
one

e However, it should
not be surprising
that carefully data
will protect the
policy against
sensitivity to small
variations

CENTER FOR ROBOTICS T. Berrueta, A. Pinosky, T. Murphey, “Maximum diffusion reinforcement learning,”
Nature Machine Intelligence, 2024.
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Conclusions

e Machine learning is data sensitive

* Most ML techniques address this with more data rather than
better data

* Robots can curate their own data during learning

* Ergodic approaches lead to superior learning outcomes
e with mathematical single-shot properties
* and empirical robustness properties
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