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What do robots need to learn?  
• environment (e.g., active SLAM) 
• dynamical models (e.g., robot bodies moving) 
• interactions (e.g., social navigation) 
• perception models (e.g., ANN models of novel 

objects with novel sensors) 
• task learning (e.g., embodied single-shot RL) 

What advantages do robots have? 
• Robots do not need to learn passively 

Why does ergodicity matter?  
• ergodic control automates data collection 

2 A. Taylor, T. Berrueta, and T. D. Murphey, “Active learning in robotics: A 
review of control principles,” Mechatronics,  vol. 77, pg. 102756, 2021. 

Why Does Learning Need Ergodic Control?
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Robots Do Not Always Have Datasets

1. Non-traditional sensors: MRI / AFM / electrosense / tactile 

2. Human-Machine Interfaces, decision support

3. Manufacturing with micro-/nano-scale non-heterogenous physics

4.Data for physical systems is almost always both scarce and sparse 

5. Many physical interactions cannot be simulated 

6. Austere environments will not be simulated, even with access to cloud

7. Compute needs to be synchronous for active data collect
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Conditional Variational Autoencoders (CVAEs) are unsupervised learning methods that 
generate a latent representation conditioned on a set of parameters; use whatever 
learning model you like best, but one that predicts entropy as a function of state. 

A. Prabhakar and T. D. Murphey, “Mechanical intelligence for learning 
embodied sensor-object relationships,” Nature Communications, 2022. 

Ergodic Control for Perception Models



8 A. Prabhakar and T. D. Murphey, “Mechanical intelligence for learning 
embodied sensor-object relationships,” Nature Communications, 2022. 

This simulated robot 
has no model of its 
sensor or the object—
it creates a perception 
model through 
automated data 
collection. 

Ergodic Control for Perception Models
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A. Prabhakar and T. D. Murphey, “Mechanical intelligence for learning 
embodied sensor-object relationships,” Nature Communications, 2022. 
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New sensors, such as touch sensing 
(above) or almost anything that isn’t 
vision or audio, will need novel datasets.  
These datasets need to come from 
somewhere. 

Real-time / Online deep learning for perception 
involves compute and automated data collection The learning pipeline for all sensory modalities 

can be the same, using inference and control 
principles. This can be used to characterize 
novel materials using new sensor technologies.

See J. Ketchum’s talk on Wednesday WeBT16-AX.8

Ergodic Control for Perception Models



• Upshot: ergodic control provides a way to implement 
‘proportional response’ to the predicted error of a neural 
network

• The robot can go and collect data while ensuring coverage and 
(spatial) independence of the data

• This connects to needs in reinforcement learning….
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Maximum Diffusion Reinforcement Learning

12 T. Berrueta, A. Pinosky, T. Murphey, “Maximum diffusion reinforcement learning,” 
Nature Machine Intelligence, 2024. 

• RL typically variation in the inputs of a 
system to generate variation in the 
outputs (e.g., stochastic policies and 
MaxEnt strategies) 

• The problem with this approach is that 
variation in the inputs may not create 
very much variation in the state 

• For a continuous-time process, i.i.d. 
sampling is hard, we show there is an 
ergodic strategy, and the optimal 
strategy is diffusive  

• Moreover, controllability plays a critical 
and explicit role

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00829-3

Surprisingly, this constrained variational optimization admits 
an analytical solution for the MaxEnt path distribution. The derived 
optimal path distribution is
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(Supplementary Note 2.2). This distribution describes the trajectories 
of an optimal agent with minimally correlated paths, subject to the con-
straints imposed by continuity of experience. Moreover, equation (1) is 
equivalent to the path distribution of an anisotropic, spatially inhomo-
geneous diffusion process. Thus, minimizing correlations among agent 
trajectories leads to diffusion-like exploration whose properties can 
actually be analysed using statistical mechanics (Supplementary Fig. 3). 
This also means that the sample paths of the optimal agent are Markovian 
and ergodic (see Supplementary Notes 2.4 and 2.5 for associated theo-
rems and corollaries and their proofs). Unlike alternative RL frameworks, 
our approach does not assume the Markov property but rather enforces 
it as a property intrinsic to the optimal agent’s path distribution.
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Fig. 1 | Temporal correlations break the state of the art in RL. For most 
systems, controllability properties determine temporal correlations between 
state transitions (Supplementary Note 2.1). a, Planar point mass with dynamics 
simple enough to explicitly write down and whose policy admits a globally 
optimal analytical solution. The system’s four-dimensional state space comprises 
its planar positions and velocities. We parametrize its controllability through 
β ∈ [0, 1], where β = 0 produces a formally uncontrollable system. The task is to 
translate the point mass from p0 to pg within a fixed number of steps at different 
values of β, and the reward is specified by the negative squared Euclidean 
distance between the agent’s state and the goal. We compare state-of-the-art 
model-based and model-free algorithms, NN-MPPI and SAC, respectively, to our 
proposed MaxDiff RL framework (see Supplementary Note 4 for implementation 

details). b,d, Representative snapshots of MaxDiff RL, NN-MPPI and SAC agents 
(top to bottom) in well-conditioned (β = 1 (b)) and poorly conditioned (β = 0.001 
(d)) controllability settings. c, Even in this simple system, poor controllability 
can break the performance of RL agents. As β → 0, the system’s ability to move 
in the x direction diminishes, hindering the performance of NN-MPPI and SAC, 
whereas MaxDiff RL remains task-capable. For all bar charts, data are presented 
as mean values above each error bar, where each error bar represents the 
standard deviation from the mean with n = 1,000 (100 evaluations over ten seeds 
for each condition). All differences between MaxDiff RL and comparisons within 
this figure are statistically significant with P < 0.001 using an unpaired two-sided 
Welch’s t-test (Methods and Supplementary Table 2).
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Supplementary Figure 4: SLIP maximally di↵usive exploration in various settings. a, Undirected maximally di↵usive
exploration in a constrained N-shaped environment. The boundaries of the environment, as well as safety constraints, are
established through the use of control barrier functions, which enable safe and continuous maximally di↵usive exploration
without modifications to our approach. b, Undirected multiagent maximally di↵usive exploration of more complex environment:
a house’s floor plan. Here, five agents with identical objectives perform maximally di↵usive exploration. Because maximally
di↵usive exploration is ergodic, many tasks are inherently distributable between agents with linear scaling in complexity. c,
Directed maximally di↵usive exploration in a complex environment. Here, a single agent in a complex environment performs
directed exploration in a potential that encodes a navigation goal.

tracks whether the system is in contact with the ground or in the air. The SLIP dynamics are the following:780
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where fc(x, u) captures the SLIP dynamics during contact with the ground, and fa(x, u) captures them while in the air.781

During contact the SLIP can only exert a force, uc, by pushing along the axis of the spring, whose resting length is l0 and its782

sti↵ness is k. During flight the SLIP is subject to gravity, g, and is capable of moving the x, y-position of its toe by applying783

utx and uty , respectively. To finish specifying the SLIP dynamics, and determine whether or not the spring is in contact with784

the ground, we define,785

lc =
p
(xh � xt)2 + (yh � yt)2 + (zh � zG)2,

which describes the distance along the length of the spring to the ground, and zG is the ground height. Rather than786

explore di↵usively in the entirety of the SLIP model’s 9-dimensional state-space, we will first demand that it only explores a787

1-dimensional space described by its x-coordinate, starting from an initial condition of x(0) = 0. We can think of this as a788

projection to a 1-dimensional subspace of the system, or equivalently as a coordinate transformation with a constant Jacobian789

matrix. We note that the system’s nonsmoothness should break the path continuity constraint that our approach presumes790

to hold. However, since we use a coordinate transformation to formulate the exploration problem in terms of the system’s791

x-coordinate we do not violate the assumptions of MaxDi↵ trajectory synthesis. This is because, while the system’s velocities792

experience discontinuities, its position coordinates do not. In general, the use of coordinate transformations can extend793

the applicability of MaxDi↵ trajectory synthesis to even broader classes of systems than those claimed by our theoretical794

framework throughout Supplementary Note 1. However, this will require a formal analysis of the observability properties of795

maximally di↵usive agents, which lies outside the scope of this work.796

In order to realize maximally di↵usive exploration, we make use of MPPI in conjunction with the MaxDi↵ trajectory797

synthesis objective in Eq. 60. In Supplementary Fig. 3 we illustrate the results of this process. Supplementary Fig. 3(a) depicts798

23

• A strategy that maximizes the i.i.d. 
property does create an ergodic 
trajectory.  

• This is model-based in the it uses an 
ANN model of the dynamics to 
synthesize the optimal ergodic path  

• Moreover, the exploration has to take 
into account another ANN’s estimate of 
the reward landscape

13

Maximum Diffusion Reinforcement Learning

T. Berrueta, A. Pinosky, T. Murphey, “Maximum diffusion reinforcement learning,” 
Nature Machine Intelligence, 2024. 

Supplementary Figure 3: Maximally di↵usive trajectories of a spring-loaded inverted pendulum (SLIP). a, The
SLIP model (left panel) is a 9-dimensional nonlinear and nonsmooth second-order dynamical system, which is used as a
popular model of human locomotion. (right panel) We choose this system because it is far from the ideal assumptions under
which our theory is formulated, and yet its sample paths behave as we expect. The sample paths of the SLIP model with
MaxDi↵ trajectories in the one dimensional space determined by its x-coordinate approximately match the statistics of pure
Brownian motion in one dimension. b, Mean squared displacement (MSD) plots give the deviation of the position of an agent
over time with respect to a reference position. We can distinguish between di↵usion processes by comparing the growth of
their MSD over time. In general, we expect them to follow a relationship described by MSD(x) / t� , where � is an exponent
that determines the di↵erent di↵usion regimes (normal di↵usion � = 1, superdi↵usion 1 < � < 2, ballistic motion � � 2). As
we can see, the behavior of the di↵using SLIP model is superdi↵usive at short time-scales, but gradually becomes more like a
standard di↵usion process as we coarse-grain. Similar short-delay superdi↵usion regimes have been observed in systems with
nontrivial inertial properties [54], such as those of our macroscopic SLIP agent.

the log-determinant and instead optimize
PM

i=1 log �i, where the sum is taken over the leading M eigenvalues of C[x(t)].760

However, it is important to note that this e↵ectively restricts the exploration to an M -dimensional subspace of the full domain.761

Finally, we note that one can optimize the logarithm of the trace of C[x(t)] as an approximation that drastically reduces the762

complexity of computing the determinant in high dimensional optimizations. However, this approximation can only formally763

produce equivalent results to the log-determinant when system states vary independently from one another (i.e., when C[x(t)]764

is diagonal), which is generally not the case. Nonetheless, this assumption is routinely made out of convenience in much of the765

conditional variational autoencoder literature (e.g., [53]), so it may be of help to a practitioner at the cost of some added766

distance to the assumptions underlying our formal guarantees.767

2.5 Example applications of MaxDi↵ trajectory synthesis768

In this section, we implement MaxDi↵ trajectory synthesis across handful of applications outside of reinforcement learning769

that require both directed and undirected exploration. These should illustrate the sense in which our theoretical framework770

can extend beyond a particular algorithmic implementation, or even reinforcement learning as a problem setting. Moreover,771

here we will analyze the behavior of various dynamical systems made to obey maximally di↵usive statistics via MaxDi↵772

trajectory synthesis through the lens of statistical mechanics.773

We begin by studying MaxDi↵ trajectory synthesis in the undirected exploration of a nontrivial control system—a774

spring-loaded inverted pendulum (SLIP) model. The SLIP model is a popular dynamic model of locomotion and encodes775

many important properties of human locomotion [55]. In particular, we will implement the SLIP model as in [56], where it is776

described as a 9-dimensional nonlinear nonsmooth control system. The SLIP model is shown in Supplementary Fig. 3(a) and777

consists of a “head” which carries its mass, and a “toe” which makes contact with the ground. Its state-space is defined by778

the 3D velocities and positions of its head and toe, or x = [xh, ẋh, yh, ẏh, zh, żh, xt, yt, q]T , where q = {c, a} is a variable that779
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deployments (Fig. 5d and Supplementary Video 4), retaining the same 
robustness of its multi-shot counterpart in Fig. 3c and achieving simi-
lar task performance. Despite ergodicity-breaking in the single-shot 
ant environment, MaxDiff RL still leads to improved outcomes over 
NN-MPPI and SAC, as in Fig. 5e, where we plot the final distance trav-
elled to ensure that no reward hacking took place. However, the loss of 
ergodicity leads to an increase in the variance of single-shot MaxDiff RL 
agent performance, as well as equivalent performance to NN-MPPI in 
multi-shot (Supplementary Fig. 9), which we expect as a result of our 
robustness guarantees no longer holding.

Discussion
Throughout this work, we have highlighted the ways in which RL 
is fragile to temporal correlations intrinsic to many sequential 
decision-making processes. We introduced a framework based on the 

statistical mechanics of ergodic processes to overcome these limita-
tions, which we term MaxDiff RL. Our framework offers a generalization 
of the current state of the art in RL and addresses many foundational 
issues holding back the field: the ergodicity of MaxDiff RL agents ena-
bles data acquisition that is indistinguishable from i.i.d. sampling, 
performance that is robust to seeds and single-shot learning. Through 
its roots in statistical physics, our work forms a starting point for a more 
scientific study of embodied RL—one in which falsifiable predictions 
can be made about agent properties and their performance.

However, much more work at the nexus of physics, learning and 
control remains to be done in pursuit of this goal. For one, approaches 
grounded in statistical physics for tuning or annealing temperature-like 
parameters during learning will be necessary to achieve effective explo-
ration without sacrificing agent performance65. Additionally, control 
techniques capable of enforcing ergodicity in the face of environmental 
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Fig. 5 | Maximally diffusive RL agents are capable of single-shot learning.  
a, Illustration of MuJoCo ant environment. b, Typical algorithms learn across 
many different initializations and deployments of an agent, which is known 
as multi-shot learning. In contrast, single-shot learning insists on a single task 
attempt, which requires learning through continuous deployments. Here, we 
prove that MaxDiff RL agents are equivalently capable of single-shot and multi-
shot learning in a broad variety of settings. c, Single-shot learning depends on 
the ability to generate data samples ergodically, which MaxDiff RL guarantees 
when there are no irreversible state transitions in the environment. d, Single-
shot learning in the swimmer MuJoCo environment. We find that MaxDiff RL 
achieves robust performance comparable to its multi-shot counterpart (see 
also Supplementary Video 4). e, In contrast to the swimmer, the MuJoCo ant 

environment contains irreversible state transitions (for example, flipping upside 
down) preventing ergodic trajectories. Nonetheless, MaxDiff RL remains state 
of the art in single-shot learning. Note that we report returns over a window of 
1,000 steps in analogy to our multi-shot results, where episodes consist of 1,000 
environment interactions. For all reward curves, the shaded regions correspond 
to the standard deviation from the mean across ten seeds. For all bar charts, 
data are presented as mean values above each error bar, where each error bar 
represents the standard deviation from the mean and the data distribution 
is plotted directly (n = ten seeds for each condition). All differences between 
MaxDiff RL and comparisons within this figure are statistically significant 
with P < 0.001 using an unpaired two-sided Welch’s t-test (Methods and 
Supplementary Table 2).

• Ergodic / i.i.d. guarantees enable stronger 
guarantees on single-shot performance in 
the form of seed invariance  

• Benchmarking single-shot performance 
specifically highlights the quality of 
ergodicity-supported exploration
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Fig. 5 | Maximally diffusive RL agents are capable of single-shot learning.  
a, Illustration of MuJoCo ant environment. b, Typical algorithms learn across 
many different initializations and deployments of an agent, which is known 
as multi-shot learning. In contrast, single-shot learning insists on a single task 
attempt, which requires learning through continuous deployments. Here, we 
prove that MaxDiff RL agents are equivalently capable of single-shot and multi-
shot learning in a broad variety of settings. c, Single-shot learning depends on 
the ability to generate data samples ergodically, which MaxDiff RL guarantees 
when there are no irreversible state transitions in the environment. d, Single-
shot learning in the swimmer MuJoCo environment. We find that MaxDiff RL 
achieves robust performance comparable to its multi-shot counterpart (see 
also Supplementary Video 4). e, In contrast to the swimmer, the MuJoCo ant 

environment contains irreversible state transitions (for example, flipping upside 
down) preventing ergodic trajectories. Nonetheless, MaxDiff RL remains state 
of the art in single-shot learning. Note that we report returns over a window of 
1,000 steps in analogy to our multi-shot results, where episodes consist of 1,000 
environment interactions. For all reward curves, the shaded regions correspond 
to the standard deviation from the mean across ten seeds. For all bar charts, 
data are presented as mean values above each error bar, where each error bar 
represents the standard deviation from the mean and the data distribution 
is plotted directly (n = ten seeds for each condition). All differences between 
MaxDiff RL and comparisons within this figure are statistically significant 
with P < 0.001 using an unpaired two-sided Welch’s t-test (Methods and 
Supplementary Table 2).
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exhibit favourable generalization properties across agent embodi-
ments. To explore this possibility, as well as the robustness of MaxDiff 
RL agents to variations in their neural representations, we devised a 
transfer experiment in the MuJoCo swimmer environment. We designed 
two variants of the swimmer: one with a heavy, less controllable tail of 
ms = 1 and another with a light, more controllable tail of ms = 0.1 (Fig. 4a). 
We trained two sets of representations for each algorithm. One set was 
trained with the light-tailed swimmer, and another set was trained 
with the heavy-tailed swimmer. Then we deployed and evaluated each 
set of representations on both the swimmer variant observed during 
training and its counterpart. Our experiment’s outcomes are shown in 
Fig. 4b,c, where the results are categorized as ‘baseline’ if the trained and 
deployed swimmer variants match or ‘transfer’ if they were swapped. 
The baseline experiments validate other results shown throughout 
the Article: all algorithms benefit from working with a more control-
lable system whose dynamics induce weaker temporal correlations 
(Fig. 4b and Supplementary Video 2). However, as MaxDiff RL is the 
only approach taking temporal correlations into account, it is the only 
method that remains task-capable with a heavy-tailed swimmer.

For the transfer experiments, all of the learned neural representa-
tions of the reward function, control policy and agent dynamics were 
deployed on the swimmer variant that was not seen during training 
(Fig. 4a). First, we note that for both NN-MPPI and SAC representa-
tions, transfer leads to degrading performance across the board. This 
is the case even when the swimmer variant they were deployed onto 
was more controllable, which is counterintuitive and undesirable 
behaviour. In contrast, our MaxDiff RL agents can actually benefit 
and improve their performance when deployed on the more control-
lable swimmer variant, as desired (‘heavy-to-light’ transfer in Fig. 4c 
and Supplementary Video 3). In other words, as the task becomes 

easier in this way, we can expect the performance of MaxDiff RL agents  
to improve.

A more surprising result is the performance increase in MaxDiff 
RL agents between the baseline heavy-tailed swimmer and the 
‘light-to-heavy’ transfer swimmer (Fig. 4c and Supplementary Video 
3). We found that training with a more controllable swimmer increased 
the performance of agents when deployed on a heavy-tailed swimmer, 
showing that system controllability during training matters more to 
overall performance than the particular embodiment of the deployed 
system. This kind of zero-shot generalization57 from an easier task to a 
more challenging task is reminiscent of results seen in RL agents trained 
via curriculum learning58 as well as of the incremental learning dynamics 
of biological systems during motor skill acquisition59. However, here it 
emerges spontaneously from the properties of MaxDiff RL agents. In 
part, this occurs because greater controllability leads to improved explo-
ration, which increases the diversity of data observed during training.

Single-shot learning in ergodic agents
When agents are deployed in the real world, they face situations at test 
time that were never encountered during training. Because exhaustively 
accounting for every possible scenario is infeasible, agents capable 
of real-time adaptation and learning during individual deployments 
are desirable5. Most RL methods excel at episodic multi-shot learning 
over the course of several deployments (Fig. 5b), where randomized 
instantiations of a given task and environment passively provide a 
kind of variability that is essential to the learning process60. However, 
episodic problems of this kind are very rare in real-world applications. 
For this reason, there is a need for methods that allow agents to perform 
a task successfully within a single trial—or, in other words, for methods 
that enable single-shot learning.
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Fig. 3 | Maximally diffusive RL agents are robust to random seeds and 
initializations. a, Illustration of MuJoCo swimmer environment (left). The 
swimmer has two degrees of actuation, u1 and u2, that rotate its limbs at the 
joints, with tail mass ms and m = 1 for other limbs. MaxDiff RL synthesizes robust 
agent behaviour by learning policies that balance task-capability and diffusive 
exploration (right). In practice, this balance is tuned by a temperature-like 
parameter, α. b, To explore the role that α plays in the performance of MaxDiff 
RL, we examine the terminal returns of swimmer agents (ten seeds each) across 
values of α with ms = 1. Diffusive exploration leads to greater returns until a critical 
point (inset dashed line), after which the agent starts valuing diffusing more 
than accomplishing the task (see also Supplementary Video 1). c, Using α = 100, 

we compared MaxDiff RL against SAC and NN-MPPI with ms = 0.1. We observe 
that MaxDiff RL outperforms comparisons on average with near-zero variability 
across random seeds, which is a formal property of MaxDiff RL agents (see also 
Supplementary Video 2). For all reward curves, the shaded regions correspond to 
the standard deviation from the mean across ten seeds. For all bar charts, data are 
presented as mean values above each error bar, where each error bar represents 
the standard deviation from the mean with n = 1,000 (100 evaluations over ten 
seeds for each condition). All differences between MaxDiff RL and comparisons 
within this figure are statistically significant with P < 0.001 using an unpaired two-
sided Welch’s t-test (Methods and Supplementary Table 2).

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00829-3

exhibit favourable generalization properties across agent embodi-
ments. To explore this possibility, as well as the robustness of MaxDiff 
RL agents to variations in their neural representations, we devised a 
transfer experiment in the MuJoCo swimmer environment. We designed 
two variants of the swimmer: one with a heavy, less controllable tail of 
ms = 1 and another with a light, more controllable tail of ms = 0.1 (Fig. 4a). 
We trained two sets of representations for each algorithm. One set was 
trained with the light-tailed swimmer, and another set was trained 
with the heavy-tailed swimmer. Then we deployed and evaluated each 
set of representations on both the swimmer variant observed during 
training and its counterpart. Our experiment’s outcomes are shown in 
Fig. 4b,c, where the results are categorized as ‘baseline’ if the trained and 
deployed swimmer variants match or ‘transfer’ if they were swapped. 
The baseline experiments validate other results shown throughout 
the Article: all algorithms benefit from working with a more control-
lable system whose dynamics induce weaker temporal correlations 
(Fig. 4b and Supplementary Video 2). However, as MaxDiff RL is the 
only approach taking temporal correlations into account, it is the only 
method that remains task-capable with a heavy-tailed swimmer.

For the transfer experiments, all of the learned neural representa-
tions of the reward function, control policy and agent dynamics were 
deployed on the swimmer variant that was not seen during training 
(Fig. 4a). First, we note that for both NN-MPPI and SAC representa-
tions, transfer leads to degrading performance across the board. This 
is the case even when the swimmer variant they were deployed onto 
was more controllable, which is counterintuitive and undesirable 
behaviour. In contrast, our MaxDiff RL agents can actually benefit 
and improve their performance when deployed on the more control-
lable swimmer variant, as desired (‘heavy-to-light’ transfer in Fig. 4c 
and Supplementary Video 3). In other words, as the task becomes 

easier in this way, we can expect the performance of MaxDiff RL agents  
to improve.

A more surprising result is the performance increase in MaxDiff 
RL agents between the baseline heavy-tailed swimmer and the 
‘light-to-heavy’ transfer swimmer (Fig. 4c and Supplementary Video 
3). We found that training with a more controllable swimmer increased 
the performance of agents when deployed on a heavy-tailed swimmer, 
showing that system controllability during training matters more to 
overall performance than the particular embodiment of the deployed 
system. This kind of zero-shot generalization57 from an easier task to a 
more challenging task is reminiscent of results seen in RL agents trained 
via curriculum learning58 as well as of the incremental learning dynamics 
of biological systems during motor skill acquisition59. However, here it 
emerges spontaneously from the properties of MaxDiff RL agents. In 
part, this occurs because greater controllability leads to improved explo-
ration, which increases the diversity of data observed during training.

Single-shot learning in ergodic agents
When agents are deployed in the real world, they face situations at test 
time that were never encountered during training. Because exhaustively 
accounting for every possible scenario is infeasible, agents capable 
of real-time adaptation and learning during individual deployments 
are desirable5. Most RL methods excel at episodic multi-shot learning 
over the course of several deployments (Fig. 5b), where randomized 
instantiations of a given task and environment passively provide a 
kind of variability that is essential to the learning process60. However, 
episodic problems of this kind are very rare in real-world applications. 
For this reason, there is a need for methods that allow agents to perform 
a task successfully within a single trial—or, in other words, for methods 
that enable single-shot learning.

c

Environment interactions (millions)

Ep
is

od
e 

re
tu

rn

MaxDi! RL, α = 100 NN-MPPI SAC

Te
rm

in
al

 re
tu

rn

0
0.2 0.4 0.6 0.8 1.0

100

200

300

400

500

0

Fig. 3 | Maximally diffusive RL agents are robust to random seeds and 
initializations. a, Illustration of MuJoCo swimmer environment (left). The 
swimmer has two degrees of actuation, u1 and u2, that rotate its limbs at the 
joints, with tail mass ms and m = 1 for other limbs. MaxDiff RL synthesizes robust 
agent behaviour by learning policies that balance task-capability and diffusive 
exploration (right). In practice, this balance is tuned by a temperature-like 
parameter, α. b, To explore the role that α plays in the performance of MaxDiff 
RL, we examine the terminal returns of swimmer agents (ten seeds each) across 
values of α with ms = 1. Diffusive exploration leads to greater returns until a critical 
point (inset dashed line), after which the agent starts valuing diffusing more 
than accomplishing the task (see also Supplementary Video 1). c, Using α = 100, 

we compared MaxDiff RL against SAC and NN-MPPI with ms = 0.1. We observe 
that MaxDiff RL outperforms comparisons on average with near-zero variability 
across random seeds, which is a formal property of MaxDiff RL agents (see also 
Supplementary Video 2). For all reward curves, the shaded regions correspond to 
the standard deviation from the mean across ten seeds. For all bar charts, data are 
presented as mean values above each error bar, where each error bar represents 
the standard deviation from the mean with n = 1,000 (100 evaluations over ten 
seeds for each condition). All differences between MaxDiff RL and comparisons 
within this figure are statistically significant with P < 0.001 using an unpaired two-
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• Robustness (or 
“zero shot” learning) 
is also a benefit 

• This is largely an 
empirical statement, 
not a mathematical 
one  

• However, it should 
not be surprising 
that carefully data 
will protect the 
policy against 
sensitivity to small 
variations
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Conclusions

• Machine learning is data sensitive

• Most ML techniques address this with more data rather than 
better data

• Robots can curate their own data during learning

• Ergodic approaches lead to superior learning outcomes

• with mathematical single-shot properties

• and empirical robustness properties
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