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Multi-Agent Ergodic Coverage

 Many search and surveillance applications have prior
information, e.g., target distributions, information from
scouting missions, satellite images, etc.

» Coverage tasks benefit greatly from high cooperation levels
In the team, e.q., to distribute agents, avoid redundant work,
or even leverage individual agent capabilities/synergies.

« Ergodic coverage offers a unique and natural means to
tackle homogeneous and heterogeneous coverage problems
In the presence of prior knowledge.



Outline

e Homogeneous Teams
* Reminder on SA Ergodic Planning
« Sequential MA Planning
« Examples

 Heterogeneous Teams
« Spectral-Based Distribution
« Systematic Investigation
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Background on Ergodic Trajectory Optimization

 Reminder: we seek paths that minimizes the Ergodic metric
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Background on Ergodic Trajectory Optimization

* Find controls that minimize the Ergodic metric
u* = argmin, @(y, ¢)
» subject to dynamic constraints

subject tolq = f(q(t), u(t))l

[1] Mathew, G.cd¥legicydiindMetricsyfarsergodiditrignddesign of ergodic dynamics for multi-agent systems. Physica D: Nonlinear Phenomena 240(4), 432-442 (2011)



Stochastic Trajectory Optimization

* Deterministic vs Stochastic trajectory optimization
* Example of DTO: Artificial Potential Field, A*, etc.

* Example of STO: Rapidly exploring random tree, Particle swarm
optimization, simulated annealing, Bayesian optimization, etc.

RRT [5] PSOI6]

* In our case, we use sampling-based cross-entropy planning [3]

[3] Kobilarov, M. (2012). Cross-Entropy Randomized Motion Planning. Robotics: Science and Systems VII, 153.
[4] Fedele, G. (2018). Obstacles avoidance based on switching potential functions. Journal of Intelligent & Robotic Systems, 90, pp.387-405.
[5] LaValle, Steven M. (1998). Rapidly-exploring random trees: A new tool for path planning. Technical Report (TR 98-11).
[6] Axel Thevenot. https://towardsdatascience.com/particle-swarm-optimization-visually-explained-46289eeb2e14
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Sampling-based Cross-Entropy Ergodic Planning

* Dubins car model with state g = (x,y, 6) of coordinates and orientation
X =ucosb, y=usinf, 6 =v

* Define primitives based on forward velocity v and turning rate w (based
on the agent’s dynamics)

e straight lines (constant velocity v, and w = 0)
e arcs of radius viw (v,w # 0)

* Importance sampling and evaluation on ergodicity at each timestep
e Starting from the previous ending position

 Sample a set of trajectories, each a sequence of primitives (z =

[Ul, W1, Vo, Wy, ..., Up, Wn])
e Calculate Ergodicity and update sampling distribution using elite trajectories
* lterate above steps until converge
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‘Single agent Cross-Entropy Ergodic Planning
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Homogeneous Multi-Agent Ergodic Planning

« Sequential MA Ergodic planning: For each agent

« get current time accumulated statics conditioned on all previous
planned agents

« plan a current optimal trajectory (using SA planner)
* renormalize time accumulated statics for the next decision agent

Optimal trajectory
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Multi agent Cross-Entropy Ergodic Planning
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Outline

« Homogeneous Teams
 Reminder on SA Ergodic Planning
« Sequential MA Planning
« Examples

 Heterogeneous Teams
« Spectral-Based Distribution
« Systematic Investigation
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Cooperation in Heterogeneous Teams

x: -~

https://medium.com/@oluwafemidiakhoa/the-convergence-of-human-ambition-and-artificial-intelligence-
c45f8e7371bf
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|Heterogeneous Ergodic-Based Distribution

» Key Idea: Let agents identify/leverage their own capabilities
» Distribution of heterogeneous agents directly in the spectral domain

» Spectral bands encode information at different scales, matching their
individual motion/sensing capabilities
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| Simulation results

 Fixed, randomly generated search problems over Gaussian-
based and road network information maps

« Teams: mix of agents with different Gaussian sensor footprints
» Cross-entropy planner, based on path primitives
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| Agent Types and Assignments

* AO: low-fidelity, high-range
sensor, omnidirectional motion
model (e.g., UAV flying at high
altitude)

* A2: high-fidelity, low-range
sensor, omnidirectional motion
model e
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Al: low-fidelity, high-range
sensor, curve-constrained
motion model

A3: high-fidelity, low-range
sensor, curve-constrained
motion model (e.g., ground
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| Simulation results

* 40% improvement in coverage efficiency, 15% in time to find all targets

0,035 Comparing ergodicity values and time taken to find targets using different assignments
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| Simulation results

Optimal Assignment
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| Simulation results

Optimal Assignment
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| Summary

Multi-Agent Coverage benefits from high cooperation to help
distribute agents, avoid redundant work, and even leverage
Individual capabilities/synergies within the team

Single-Agent Ergodic Planning can be naturally extended to

offer these advantages

Sequential planning
Joint Planning feasible, but more expensive (cannot scale well)

Heterogeneous distribution of the agents in spectral domain

Interesting note: paths with lower Ergodicity often correlate
with better time to find discrete targets (in addition to better
balancing exploration/exploitation of prior information).
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